Menu

用 scipy 求解 The Diet Problem

Formulate the following Diet Problem. Transform the formulation into LP standard form. Use some LP solver to solve the problem. Try to find the dual of the problem (optional). Suppose that we have three foods and two nutritional requirements to satisfy:

Food Cost / Serving Vitamin A Calories Maximum Servings
Corn (C) $0.18 107 72 10
2% milk (M) $0.23 500 121 10
Wheat bread (W) $0.05 0 65 10
\ Minimum Amount Nutrient in Diet Maximum Amount in Diet
Calories (Cal) 2000 2250
Vitamin A (VA) 5000 50000

Formulate the problem

\[\begin{aligned} \min\, && 0.18x_1+0.23x_2+0.05x_3 \\ \textit{s.t.}\, & 2000\le & 72x_1+121x_2+65x_3 &\le 2250 \\ & 5000\le & 107x_1+500x_2 &\le 50000 \\ & 0\le & x_1&\le 10 \\ & 0\le & x_2&\le 10 \\ & 0\le & x_3&\le 10\\ \end{aligned}\]

Transform the formulation into LP standard form

\[\mathbf{A}=\begin{bmatrix} 107 & 500 & 0 \\ -107& -500&0 \\ 72 & 121 & 65 \\ -72 & -121 & -65 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -1 \end{bmatrix}\\ \mathbf{b}=\left[50000,-5000,2250,-2000,10, 0, 10, 0, 10, 0\right]^T\\ \mathbf{c}=\left[0.18,0.23,0.05\right]\]

Use some LP solver to solve the problem

此处使用了 scipy.optimize.linprog,方便又快捷。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
from scipy.optimize import linprog

if __name__ == "__main__":
    A_ub = [[107, 500, 0],
            [-107, -500, 0],
            [72, 121, 65],
            [-72, -121, -65],
            [1, 0, 0],
            [-1, 0, 0],
            [0, 1, 0],
            [0, -1, 0],
            [0, 0, 1],
            [0, 0, -1]]
    b_ub = [50000, -5000, 2250, -2000, 10, 0, 10, 0, 10, 0]
    c = [0.18, 0.23, 0.05]
    print(linprog(c, A_ub, b_ub))

运行上面这段代码,得到结果,与参考答案一致。

1
2
3
4
5
6
7
8
9
10
     con: array([], dtype=float64)
     fun: 3.1500000382242486
 message: 'Optimization terminated successfully.'
     nit: 9
   slack: array([4.47919444e+04, 2.08055583e+02, 2.49999993e+02, 7.18327624e-06,
       8.05555529e+00, 1.94444471e+00, 2.22118501e-09, 1.00000000e+01,
       1.78711305e-07, 9.99999982e+00])
  status: 0
 success: True
       x: array([ 1.94444471, 10.        ,  9.99999982])