Menu

Pixel Shuffle

题目链接

题意:对一张像素图可以执行旋转、翻转、div、mix 等操作,现在给出一个操作序列,问重复进行多少次这个操作序列,可以使得任意 n*n 的像素图变回原样。

转换一下就是:设操作序列为置换$A$,则求 m 使得$A^m$为全等置换(所有元素都映射到自己)

对于每个长度为$L$的循环$B$,当$m$为$B$的整数倍时,$B^m$为全等置换,所以只需要把操作序列对应的置换拆解成多个循环,求所有循环长度的 LCM 即可,然后题目就变成了模拟。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#include <bits/stdc++.h>
#define ID(x, y) ((x)*n + (y))
using namespace std;
struct Permutation : vector<int>
{
	Permutation(int n = 0) : vector<int>(n) {}
	friend Permutation operator*(const Permutation &f, const Permutation &g)
	{
		Permutation ans(f.size());
		for (int i = 0; i < f.size(); ++i)
			ans[i] = g[f[i]];
		return ans;
	}
	friend Permutation inv(const Permutation &f)
	{
		Permutation ans(f.size());
		for (int i = 0; i < f.size(); ++i)
			ans[f[i]] = i;
		return ans;
	}
	friend vector<vector<int>> cycle(const Permutation &f)
	{
		vector<int> vis(f.size(), 0);
		vector<vector<int>> ans;
		for (int i = 0; i < f.size(); ++i)
			if (!vis[i])
			{
				ans.push_back(vector<int>());
				for (int j = i; !vis[j]; j = f[j])
					vis[j] = 1, ans.back().push_back(j);
			}
		return ans;
	}
};
int main()
{
	int t, n;
	char s[255] = " ";
	for (scanf("%d", &t); t--;)
	{
		scanf("%d", &n), gets(s + 1), gets(s + 1);
		Permutation f(n * n), g(n * n);
		for (int i = 0; i < n; ++i)
			for (int j = 0; j < n; ++j)
				f[ID(i, j)] = ID(i, j);
		int b = strlen(s);
		for (s[b] = ' '; b; --b)
			if (s[b] == ' ' && s[b - 1] != ' ')
			{
				int flag = s[b--] = 0;
				if (s[b] == '-')
					flag = 1, s[b--] = 0;
				while (s[b - 1] != ' ')
					--b;
				for (int i = 0; i < n; ++i)
					for (int j = 0; j < n; ++j)
						g[ID(i, j)] =
							s[b] == 'r' ? ID(n - j - 1, i) :
							s[b] == 's' ? ID(i, n - j - 1) :
							s[b + 1] == 'h' ? ID(i, i * 2 < n ? j : n - j - 1) :
							s[b + 1] == 'v' ? ID(i * 2 < n ? i : n + n / 2 - i - 1, j) :
							s[b] == 'd' ? ID(i % 2 ? i / 2 + n / 2 : i / 2, j) :
							s[b] == 'm' ? ID(i / 2 * 2 + j / (n / 2), j % (n / 2) * 2 + i % 2) :
							ID(i, j);
				f = flag ? f * inv(g) : f * g;
			}
		n = 1;
		vector<vector<int>> c = cycle(f);
		for (int i = 0; i < c.size(); ++i)
			n *= c[i].size() / __gcd((int)c[i].size(), n);
		printf("%d\n", n);
		if (t)
			printf("\n");
	}
}