CC BY 4.0 (除特别声明或转载文章外)
如果这篇博客帮助到你,可以请我喝一杯咖啡~
辗转相除法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } //a、b的最大公约数
ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } //a、b的最小公倍数
ll gcd(ll a, ll b, ll &x, ll &y) //扩展欧几里得,引用返回a*x+b*y=gcd(a,b)绝对值之和最小的解
{
if (!a)
return x = 0, y = 1, b;
ll d = gcd(b % a, a, y, x);
return x -= b / a * y, d;
}
ll gcd(ll a, ll b) //无取模求gcd
{
for (ll t = 1, c, d;;)
{
if (a == b)
return t * a;
if (a < b)
swap(a, b);
if (a & 1)
c = 0;
else
a >>= 1, c = 1;
if (b & 1)
d = 0;
else
b >>= 1, d = 1;
if (c && d)
t <<= 1;
else if (!c && !d)
a -= b;
}
}
裴蜀定理
对任何$a,b\in Z$和它们的最大公约数$d$,关于未知数$x,y$的线性不定方程(称为裴蜀等式):$ax+by=c$当仅当$d\vert c$,可知有无穷多解。特别地,$ax+by=d$一定有解。
推论
$a,b$互质的充要条件是$ax+by=1$有整数解。
同余系运算
三种乘法的比较,结论是如果可以用__int128
就用,否则就用第一种:
求乘法逆元的另外一种方法是用欧拉定理$x^{\phi(m)}\equiv1\pmod m$,x 的逆是$x^{\phi(m)-1}$。特别地,m 为素数时$\phi(m)=m-1$,此时 x 的逆就是pow(x,m-2,m)
。
log 函数:m 为素数时求解模方程$a^x\equiv b\pmod m$。设 P 为质数,G 为 P 的原根,则$x^y\equiv b\pmod P$等价于$y\ ind\ x\equiv b\pmod{P-1}$,其中$G\ ind\ x\equiv x\pmod P$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
struct Mod
{
const ll M, SM;
Mod(ll M) : M(M), SM(sqrt(M) + 0.5) {}
ll qadd(ll &a, ll b) const { return a += b, a >= M ? a -= M : a; } //假如a+b<2*M,就不必取模了,取模运算耗时很高
ll add(ll a, ll b) const { return qadd(a = (a + b) % M, M); } //考虑a和b不在同余系内甚至为负数的情况
ll mul(ll a, ll b) const { return add(a * b, M); } //ll类型是int的时候小心 a*b 爆精度
ll inv(ll a) const { return pow(a, M - 2); } //要求M为素数,否则return pow(a, phi(M) - 1);
ll pow(ll a, ll b) const
{
ll r = 1;
/*
if (b < 0)
b = -b, a = inv(a);
*/
for (a = add(a, M); b; b >>= 1, a = mul(a, a))
if (b & 1)
r = mul(r, a);
return r;
}
/*
ll mul(ll a, ll b) const { return add(a * b, -M * (ll)((long double)a / M * b)); } //long double 有效位数16~18位,模数过大时慎用!
ll mul(ll a, ll b) const //Head算法,无循环快速计算同余乘法,根据a*b是否爆ll替换a*b%M,需要a<M且b<M,可以调用时手动取模
{
ll c = a / SM, d = b / SM;
a %= SM, b %= SM;
ll e = add(add(a * d, b * c), c * d / SM * (SM * SM - M));
return add(add(a * b, e % SM * SM), add(c * d % SM, e / SM) * (SM * SM - M));
}
ll mul(ll a, ll b) const //龟速乘
{
ll r = 0;
for (a %= M; b; b >>= 1, qadd(a, a))
if (b & 1)
qadd(r, a);
return r;
}
ll inv(ll a) const //模m下a的乘法逆元,不存在返回-1(m为素数时a不为0必有逆元)
{
ll x, y, d = gcd(a, M, x, y);
return d == 1 ? add(x, M) : -1;
}
vector<ll> sol(ll a, ll b) const //解同余方程,返回ax=b(mod M)循环节内所有解
{
vector<ll> ans;
ll x, y, d = gcd(a, M, x, y);
if (b % d)
return ans;
ans.push_back(mul((b / d) % (M / d), x));
for (ll i = 1; i < d; ++i)
ans.push_back(add(ans.back(), M / d));
return ans;
}
ll log(ll a, ll b) const
{
unordered_map<ll, ll> x;
for (ll i = 0, e = 1; i <= SM; ++i, e = mul(e, a))
if (!x.count(e))
x[e] = i;
for (ll i = 0, v = inv(pow(a, SM)); i <= SM; ++i, b = mul(b, v))
if (x.count(b))
return i * SM + x[b];
return -1;
}
*/
};
中国剩余定理解同余方程组
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
ll crt(const vector<pair<ll, ll>> &v) //同余方程组,x%v[i].first==v[i].second,不存在返回-1
{
ll m = v[0].first, r = v[0].second, c, d, x, y, z;
for (int i = 1; i < v.size(); ++i)
{
if (c = v[i].second - r, d = gcd(m, v[i].first, x, y), c % d)
return -1;
gcd(m / d, z = v[i].first / d, x, y), r += c / d * x % z * m, r %= m *= z;
}
return r < 0 ? r + m : r;
}
struct Excrt
{
vector<ll> b2, a2;
int n;
void init()
{
scanf("%d", &n);
ll q, qq;
for (int i = 0; i < n; i++)
scanf("%lld%lld", &q, &qq), b2.push_back(q), a2.push_back(qq);
}
ll get()
{
ll M, ans, x = 0, y = 0;
M = 1, ans = 0;
for (int i = 0; i < n; i++)
{
ll a = M, b = b2[i], c = (a2[i] - ans % b + b) % b; //ax=c(mod b)
ll gcd = exgcd(a, b, x, y), bg = b / gcd;
if (c % gcd != 0)
{
return -1;
} //返回-1表示无解
x = mul(x, c / gcd, bg);
y = M / gcd * b;
ans = (x * M + ans) % y; //???k???????
if (ans < 0)
ans += y;
M = y; //M??k?m?lcm
}
return ans;
}
};
二次剩余
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
struct QuadraticRes
{
struct numb
{
ll x, y;
};
numb mul(const numb &a, const numb &b, ll p)
{
return (numb){(a.x * b.x % p + a.y * b.y % p * w % p) % p, (a.x * b.y + a.y * b.x) % p};
}
ll pow2(numb a, ll b, ll p)
{
numb ret = {1, 0}, tem = a;
while (b)
{
if (b & 1)
ret = mul(ret, tem, p);
tem = mul(tem, tem, p), b >>= 1;
}
return ret.x % p;
}
ll get(ll n, ll p)
{
if (Mod(p).pow(n, p / 2) == p - 1)
{
return -1;
} //此时无解
while (1)
{
ll a = rand();
w = (a * a - n + p) % p;
if (Mod(p).pow(w, p / 2) == p - 1)
{
return pow2((numb){a, 1}, p / 2 + 1, p); //还有一个解是p减去这个值
}
}
}
};
欧拉筛
欧拉函数$\phi(n)$是小于 n 的正整数中与 n 互素的数的数目。特别地,规定$\phi(1)=1$,易知 n>2 时都为偶数。
欧拉函数是积性函数,即对任意素数$p,q$满足下列关系:$\phi(pq)=\phi(p)\phi(q)=(p-1)(q-1)$对任何两个互质的正整数$x, m(m\geq2)$有欧拉定理:$x^{\phi(m)}\equiv1\pmod m$当 m 为素数 p 时,此式变为费马小定理:$x^{p-1}\equiv1\pmod p$利用欧拉函数和它本身不同质因数的关系,用筛法$O(N)$预处理某个范围内所有数的欧拉函数值,并求出素数表。同时,利用计算欧拉函数过程中求出的最小素因子 m,可以实现$O(log N)$的素因数分解。
同时求莫比乌斯函数$\mu(n)$,存在mu
中。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
struct EulerSieve
{
vector<int> p, m, phi, mu; //素数序列,最小素因子,欧拉函数,莫比乌斯函数
EulerSieve(int N) : m(N, 0), phi(N, 0), mu(N, 0)
{
phi[1] = mu[1] = 1; //m[1]=0,m[i]==i可判断i是素数
for (long long i = 2, k; i < N; ++i) //防i*p[j]爆int
{
if (!m[i])
p.push_back(m[i] = i), phi[i] = i - 1, mu[i] = -1; //i是素数
for (int j = 0; j < p.size() && (k = i * p[j]) < N; ++j)
{
phi[k] = phi[i] * p[j];
if ((m[k] = p[j]) == m[i])
{
mu[k] = 0;
break;
}
phi[k] -= phi[i];
mu[k] = -mu[i];
}
}
}
};
直接求欧拉函数
1
2
3
4
5
6
7
8
9
10
11
ll phi(ll n)
{
ll phi = n;
for (ll i = 2; i * i <= n; ++i)
if (!(n % i))
for (phi = phi / i * (i - 1); !(n % i);)
n /= i;
if (n > 1)
phi = phi / n * (n - 1);
return phi;
}
常见数论函数变换
$\sum_{d\vert n}\mu(d)=[n=1]$
$\phi(n)=\sum_{i=1}^n[\gcd(i,n)=1]=\sum_{i=1}^n\sum_{k\mid i,k\mid n}\mu(k)=\sum_{k\mid n}\frac nk\mu(k)$
前缀和
欧拉函数前缀和$S_\phi(n)=\frac{(n+1)n}2-\sum_{d=1}^nS_\phi(\frac{n}{d})$
莫比乌斯函数前缀和$S_\mu(n)=1-\sum_{d=1}^nS_\mu(\frac{n}{d})$
莫比乌斯反演
若$f(n)=\sum_{d\vert n}g(d)$,则$g(n)=\sum_{d\vert n}\mu(d)f(\frac{n}{d})$
若$f(n)=\sum_{i=1}^nt(i)g(\frac{n}{i})$,则$g(n)=\sum_{i=1}^n\mu(i)t(i)f(\frac{n}{i})$(此时代$t(i)=[gcd(n,i)>1]$可得上式)
举例(其中$T=kd$):
\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)\\ =\sum_d d\sum_{i=1}^n\sum_{j=1}^m[\gcd (i,j)=d]\\ =\sum_{d}d\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac md\rfloor}[\gcd (i,j)=1]\\ =\sum_{d}d\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac md\rfloor}\sum_{k\mid i,k\mid j}\mu(k)\\ =\sum_d d\sum_k\mu(k)\sum_{k\mid i}^{\lfloor\frac nd\rfloor}\sum_{k\mid j}^{\lfloor\frac md\rfloor}\\ =\sum_{d}d\sum_k\mu(k)\lfloor\frac n{kd}\rfloor\lfloor\frac m{kd}\rfloor\\ =\sum_{T}\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\sum_{k\mid T}\frac Tk\mu(k)\\ =\sum_{T}\lfloor\frac nT\rfloor\lfloor\frac mT\rfloor\varphi(T)\]$\varphi(T)$可以使用线性筛预处理处理,我们就可以枚举$T$求上式了,时间复杂度$O(n)$。多组数据$n,m$询问上式,时间复杂度就变成了$O(Tn)$。事实上,$\lfloor\frac{n}{T}\rfloor$是不会轻易变化的,是过了连续的一段后才发生变化的,那么我们就可以计算出这一段的结束位置,对$\varphi$函数作前缀和,就可以直接分块了,这样的时间复杂度是$O(T\sqrt{n})$的。
PollardRho 大数素因子分解
时间复杂度$O(N^{1/4})$,数据多的时候可考虑欧拉筛优化。
注意这里模乘法很容易爆 long long,看情况选用快速乘法。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
struct PollardRho
{
bool isPrime(ll n, int S = 12) //MillerRabin素数测试,S为测试次数,用前S个素数测一遍,S=12可保证unsigned long long范围内无错;n<2请特判
{
static ll d, u, t, p[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37};
for (d = n - 1; !(d & 1);)
d >>= 1; //未对0,1做特判!
Mod mo(n);
for (int i = 0; i < S; ++i)
{
if (!(n % p[i]))
return n == p[i];
for (t = mo.pow(p[i], u = d); t != n - 1 && t != 1 && u != n - 1;)
t = mo.mul(t, t), u <<= 1;
if (t != n - 1 && !(u & 1))
return 0;
}
return 1;
}
void fac(ll n, vector<ll> &factor)
{
/*
if (n < e.m.size()) //欧拉筛预处理优化,可以防止很多小素数因子的情况
{
for (; n > 1; n /= e.m[n])
factor.push_back(e.m[n]);
return;
}
*/
if (isPrime(n))
return factor.push_back(n);
Mod mo(n);
for (ll c = 1;; ++c)
for (ll i = 0, k = 1, x = rand() % (n - 1) + 1, y, p;;)
{
if (++i == k)
y = x, k <<= 1;
if (x = mo.add(mo.mul(x, x), c), p = __gcd(abs(x - y), n), p == n)
break;
if (p > 1)
return fac(p, factor), fac(n / p, factor);
}
}
};
快速变换
蝴蝶变换(雷德变换)
保存 FTT 和 FNTT 时交换的对应位置(即保存的是置换)。
1
2
3
4
5
6
7
8
9
struct Rader : vector<int>
{
Rader(int n) : vector<int>(1 << int(ceil(log2(n))))
{
for (int i = at(0) = 0; i < size(); ++i)
if (at(i) = at(i >> 1) >> 1, i & 1)
at(i) += size() >> 1;
}
};
快速傅里叶变换
使用示例,高精度乘法。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
struct FFT : Rader
{
vector<complex<lf>> w;
FFT(int n) : Rader(n), w(size())
{
for (int i = 0; i < size(); ++i)
w[i] = polar(1.0, 2 * M_PI * i / size());
}
void fft(vector<complex<lf>> &x) const
{
for (int i = 0; i < x.size(); ++i)
if (i < at(i))
std::swap(x[i], x[at(i)]);
for (int i = 1; i < size(); i <<= 1)
for (int j = 0; j < i; ++j)
for (int k = j; k < size(); k += i << 1)
{
complex<lf> t = w[size() / (i << 1) * j] * x[k + i];
x[k + i] = x[k] - t, x[k] += t;
}
}
vector<ll> ask(const vector<ll> &a, const vector<ll> &b) const
{
vector<complex<lf>> xa(a.begin(), a.end()), xb(b.begin(), b.end());
xa.resize(size()), xb.resize(size()), fft(xa), fft(xb);
for (int i = 0; i < size(); ++i)
xa[i] *= xb[i];
fft(xa);
vector<ll> ans(size());
for (int i = 0; i < size(); ++i)
ans[i] = xa[(size() - i) & (size() - 1)].real() / size() + 0.5;
return ans;
}
vector<ll> askMod(const vector<ll> &a, const vector<ll> &b, ll M) const //任意模数
{
vector<complex<lf>> e(size()), c(size());
for (int i = 0; i < a.size(); ++i)
e[i].real(a[i] & 0x7fff), e[i].imag(a[i] >> 15);
for (int i = 0; i < b.size(); ++i)
c[i].real(b[i] & 0x7fff), c[i].imag(b[i] >> 15);
fft(e), fft(c);
vector<complex<lf>> d(c);
for (int i = 0; i < size(); ++i)
{
int fr = (size() - i) & (size() - 1);
c[i] *= 0.5 * complex<lf>(e[i].X + e[fr].X, e[i].Y - e[fr].Y);
d[i] *= 0.5 * complex<lf>(e[i].Y + e[fr].Y, e[fr].X - e[i].X);
}
fft(c), fft(d);
vector<ll> ans(size());
for (int i = 0; i < size(); ++i)
{
ll fr = (size() - i) & (size() - 1),
p = c[fr].X / size() + 0.5,
o = c[fr].Y / size() + 0.5,
x = d[fr].X / size() + 0.5,
u = d[fr].Y / size() + 0.5;
ans[i] = (p % M + ((o + x) % M << 15) + (u % M << 30)) % M;
}
return ans;
}
};
快速数论变换
原理和 FFT 相同,解决特殊情况下 FFT 的浮点误差,并且可以在同余系进行变换。
对于形如$m=2^nc+1$的费马素数,记其原根为 g,则旋转因子为$g^{(m-1)/n}$,满足$g^{m-1}=1$且$2^n\mid m-1$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
struct FNTT : Rader, Mod
{
vector<ll> w;
FNTT(int N, ll M, ll G) : Rader(N), Mod(M), w(size(), pow(G, (M - 1) / size()))
{
for (int i = w[0] = 1; i < size(); ++i)
w[i] = mul(w[i], w[i - 1]);
}
void fntt(vector<ll> &x) const
{
for (int i = 0; i < size(); ++i)
if (i < at(i))
std::swap(x[i], x[at(i)]);
for (int i = 1, j; i < size(); i <<= 1)
for (int j = 0; j < i; ++j)
for (int k = j; k < size(); k += i << 1)
{
ll t = mul(w[size() / (i << 1) * j], x[k + i]);
qadd(x[k + i] = x[k], M - t), qadd(x[k], t);
}
}
vector<ll> ask(vector<ll> a, vector<ll> b) const
{
a.resize(size()), b.resize(size()), fntt(a), fntt(b);
for (int i = 0; i < size(); ++i)
a[i] = mul(a[i], b[i]);
fntt(a), reverse(a.begin() + 1, a.end());
ll u = inv(size());
for (int i = 0; i < size(); ++i)
a[i] = mul(a[i], u);
return a;
}
};
常见素数的原根
r * 2 ^ k + 1 | r | k | g,mod(r * 2 ^ k + 1)的原根 |
---|---|---|---|
3 | 1 | 1 | 2 |
5 | 1 | 2 | 2 |
17 | 1 | 4 | 3 |
97 | 3 | 5 | 5 |
193 | 3 | 6 | 5 |
257 | 1 | 8 | 3 |
7681 | 15 | 9 | 17 |
12289 | 3 | 12 | 11 |
40961 | 5 | 13 | 3 |
65537 | 1 | 16 | 3 |
786433 | 3 | 18 | 10 |
5767169 | 11 | 19 | 3 |
7340033 | 7 | 20 | 3 |
23068673 | 11 | 21 | 3 |
104857601 | 25 | 22 | 3 |
167772161 | 5 | 25 | 3 |
469762049 | 7 | 26 | 3 |
998244353 | 119 | 23 | 3 |
1004535809 | 479 | 21 | 3 |
2013265921 | 15 | 27 | 31 |
2281701377 | 17 | 27 | 3 |
3221225473 | 3 | 30 | 5 |
75161927681 | 35 | 31 | 3 |
77309411329 | 9 | 33 | 7 |
206158430209 | 3 | 36 | 22 |
2061584302081 | 15 | 37 | 7 |
2748779069441 | 5 | 39 | 3 |
6597069766657 | 3 | 41 | 5 |
39582418599937 | 9 | 42 | 5 |
79164837199873 | 9 | 43 | 5 |
263882790666241 | 15 | 44 | 7 |
1231453023109121 | 35 | 45 | 3 |
1337006139375617 | 19 | 46 | 3 |
3799912185593857 | 27 | 47 | 5 |
4222124650659841 | 15 | 48 | 19 |
7881299347898369 | 7 | 50 | 6 |
31525197391593473 | 7 | 52 | 3 |
180143985094819841 | 5 | 55 | 6 |
1945555039024054273 | 27 | 56 | 5 |
4179340454199820289 | 29 | 57 | 3 |
快速沃尔什变换
如果要在同余系中进行运算,则下面代码需要修改。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
void fwt(vector<ll> &x, void f(ll &l, ll &r))
{
for (int i = 1; i < x.size(); i <<= 1)
for (int j = 0; j < i; ++j)
for (int k = j; k < x.size(); k += i << 1)
f(x[k], x[k + i]);
}
void fwt(ll *b, ll *e, void f(ll &l, ll &r)) //再给一个递归二分的代码便于理解
{
if (e - b < 2)
return;
ll *m = b + (e - b) / 2;
fwt(b, m, f), fwt(m, e, f);
while (m < e)
f(*(b++), *(m++));
}
AND
1
2
void tf(ll &l, ll &r) { l += r; }
void utf(ll &l, ll &r) { l -= r; }
OR
1
2
void tf(ll &l, ll &r) { r += l; }
void utf(ll &l, ll &r) { r -= l; }
XOR
1
2
3
4
5
6
void tf(ll &l, ll &r)
{
ll tl = l + r, tr = l - r;
l = tl, r = tr;
}
void utf(ll &l, ll &r) { tf(l, r), l >>= 1, r >>= 1; }
XNOR、NAND、NOR
直接用异或运算、与运算、或运算的方法求出来,然后将互反的两位交换即可。
Pell 方程
形如$x^2-Dy^2=1$(D 为任意正整数)的方程称为佩尔方程,必有最小正整数解$(x_0,y_0)$,用
$x_n=x_0x_{n-1}+Dy_0y_{n-1},y_n=y_0x_{n-1}+x_0y_{n-1}$
可递推方程的第 n 小整数解(可用矩阵快速幂求),同时还有
$2x_0x_n=x_{n-1}+x_{n+1},2x_0y_n=y_{n-1}+y_{n+1}$
Bertrand 猜想
$\forall n>3,\exist n<p<n\times 2$其中 n 为整数,p 为质数。
威尔逊定理
当且仅当 p 为素数时:$(p-1)!\equiv -1\pmod p$,
Jacobi’s Four Square Theorem
设$a^2+b^2+c^2+d^2=n$的自然数解个数为$r4(n)$,$d(n)$为$n$的约数和,由 Jacobi’s Four Square Theorem 可知,若$n$是奇数,则$r4(n)=8d(n)$,否则$r4(n)=24d(k)$,$k$是$n$去除所有$2$后的结果。